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In optimal-control l~eory there are a number of generally accepted quality criteria, in addition to abstract 
criteria of general form, which have a clear physical meaning [1]: speed of response, intensity, fuel 
consumption, a minimum of energy, and so on. The positional solution of special optimal-control 
problems with the.,e quality criteria can be used [2-3] to design dynamic-system stabilizers. 

In this paper we investigate the possibility of using positional solutions of an optimal-control problem 
with a mixed quality criterion, made up of two of the above-mentioned quality criteria of a particular 
type. 

A classical example of an optimal-control problem with a mixed quality criterion is the Letov-Kalman 
problem on the aaalytic construction of an optimal controller. Applications of the Letov-Kalman 
problem to the stalgilization of dynamic systems are well known [4-6]. Success always depended on the 
poss~ility of constructing positional solutions. 

1. THE: STABILIZATION P R O B L E M  AND THE ACCOMPANYING 
O P T I M A L - C O N T R O L  PR OB L E M 

The classical fol~ulation of the problem of stabilizing dynamic systems is as follows. Consider the 
dynamic system 

= Ax + bu, x(O) e X o (I.I) 

where X0 is a certain neighbourhood of the origin of coordinates and x ~ R". It is required to construct 
a function u = u(x) so that for any x o ~ X 0 the system 

it = Ax + bu(x), x(O) = x o 

has a solution and it is asymptotically stable [4]. 

It was suggested hi [7] that positional solutions of optimal-control problems with certain specific quality criteria 
should be used to stabilize dynamic systems. Many other quality criteria can obviously also be used. 

To stabilize system (1.1) we will use the following optimal-control problem with a mixed quality 
criterion 

at" + (1 - a)  max luft) I --> min 
tcT(t-) 

x=Ax+bu, x(O)=x o, x(t*)=O, lu(t)l<~L (1.2) 

t~T(t*)=[O,t'], (x~R",  u~R, 0 < a < l )  
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in the class of piecewise-continuous functions u(t), t • T(t*). 
When ct = 1 problem (1.2) becomes the classical optimal speed-of-response problem. If we put 

c~ = 0, fix t* > 0 and assume that L is a sufficiently large number, we obtain the problem of constructing 
an admissible control of minimum intensity. 

We will confine Ourselves to initial statesxo for which the optimal open-loop control u°(t), t • T(t*°), of 
problem (1.2) satisfies the inequality I u°(t) I < L, t • T(t*°). 

We will first formulate the necessary condition for the open-loop control to be optimal. Suppose u°(t), 
t • T(t*°), is the solution of problem (1.2). A vector y • R n then exists such that 

y'F(t°°,0) x 0 =(1-¢ t )  ma~ lu°(t)t=(l -¢t)p ° 
teT(t TM) 

y'bu°(t *° - O) = -or 

and along with the solution of the conjugate system 

@=-A'd~, O(t'°) =-y 

and the control u°(t), t • T(t*°), the condition for a maximum is satisfied, namely 

d?" (t)buO(t) = ma,3,~'(t)bu, t • T(t '°) .  
lul~p v 

Notes. 1. We can split problem (1.2) into two problems 

f ( t  °) ffi at* + (1 - a)p(t* ) --~ rain (1.3) 
0<1" 

p(t')= minp, x =Ax+bu,  x(O)=x o, x(t ')=O (1.4) 
-(.),p 

lu(/)la p, t ~ T(t °) 

The second of these is the linear optimal-control problem (the problem of constructing an admissible control 
of minimum intensity), and the first is the problem of minimizing a function of one variable. 

2. The function f(t*), t* > 0 possesses the following properties: f(t*) ~ ** as t* -~ + 0,f(t*) ~ -0 as t* --~ +-0. 
In general, the functionf(t*), t* > 0 is non-smooth and multiextremal. 

3. The necessary conditions for optimality formulated above can be treated as the necessary first-order conditions 
for a minimum of the functionf(t*), t ° > 0. 

Henceforth, for simplicity, we will assume that ¢x = 0.5. 

2. T H E  P O S I T I O N A L  S O L U T I O N  OF T H E  A C C O M P A N Y I N G  
O P T I M A L - C O N T R O L  P R O B L E M  AND ITS R E A L I Z A T I O N  

By analogy with the previous discussion [7], to stabilize system (1.1) we will use the positional solution 
of problem (1.2) we will embed it in the family of problems 

t ' + p - - , m i n ,  / t = A x + b u ,  x ( 0 ) = z  

x ( t ' ) = 0 ,  lu( t) l~p,  t • [ 0 , t ' ]  (2.1) 

which depends on the vector z • R". We will denote the open-loop solution of problem (2.1) by u(t I z, 
t • [0, t*(z)], p(z). 

By the necessary conditions of optimality, a vector y(z) • R n exists (the vector of Lagrange multipliers) 
such that 

O • y (z)F(t (z),O)z = I~Z), y'(z)bu(t*(z)-Olz) =-1  

and along the solution 0z (t), t • [0, t* (z)] = T(z) of the conjugate system 

~ = - A ' O .  ~( t ' (z ) )  = -y(z)  (2.2) 
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the condition for a maximum is satisfied, namely 

t Ot z (t)bu(tlz) = max * z (t)bu, t ~ T(z) (2.3) 
lul<p(z) 

Note that problem (2.1) can have several optimal open-loop solutions 

ui(tlz), t~[0,ti*(z)]; pi(z), i=l,l, I>~I 
I * t i (z)+pi(z) = ti+l(z)+pi+i(z), pi(z) < pi+i(z), i = I,I - I 

We will agree that we mean by a solution of problem (2.1) the following 

u(tlz) =Ul(tlz), t ~[0,t~(z)], p(z)= pl(Z), t°(z)= t~(z) 

i.e. the optimal control of minimum intensity. 

Definition. We will call the function 

u(z) = u(+01z), z E Z (2.4) 

the (optimal) pos:itional solution of problem (1.2). Here Z is the set of all z ~ R ~ for which problem 
(2.1) has a solution. 

We will assume that the function u(z), z s Z has been constructed. This closes the initial system. As 
a result we obtain 

= Ax + bu(x), x(0) = z (2.5) 

We put 

{tj (z), 

tj (z) < 

ki(z) =sign At(t), t ~ ]tj(z), 

Az(t ) = ~t' z (t)b, t ~ T(z) 

It follows from the maximum principle (2.3) that 

and we have the relations 

j = I, p(z)} = {t ~ T(z):Az(t) = 0} 

tj+l(z), j=l,p(z)-l; t0(z)=0, tptz)+l(z)=t'(z) 

tj+l(z){, j = 0, p(z) 

u(tlz) = kj (z)p(z), t ~lt i (z), t j÷ t (z)[, j = 0, p(z) 

(2.6) 

p(z) tJ+ttt) 
F(t'(z),0)z+ ~. kj(z)p(z) J F(t'(z),t)bdt=O (2.7) 

I=0 tj(z) 

y'(z)F(t ' (z) ,  tj(z))b=O, j = l , p ( z )  

y '  (z)F(t* (z),0)z = p(z), y '  (z)bkt,(,)(z)p(z) = -1 

For any z ~ Z the following relations are obviously true 

(2.8) 

ki(z)=:~l,  j=O,p(z) ,  p(z)e{0,1,2 .... } 

Considerable system (2.5). We will assume that it has a solution x.(x) = x(x), x >~ 0, and that this 
solution is such that the functions kj(x) = kj(x(x)),j = O,p(x),p(x) = p(x(x)), x/> 0 are pieccwise-constant. 

It can be show:a that in this case the following relation is satisfied for any x 

d(t" (x('t + 0)) + p(x ('t: + 0))) / d't : -1 (2.9) 
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In fact, we put 

p=p(s)=p(x(s)), kj=kj(s)=kj(x(s)), j=O."'p, s~T+(x) 

where T+(x) is a fairly small right-sided neighbourhood of the point z. Equation (2.7) then takes the form 

tj+l(x('f)) 
F(t*(x('O),O)x(x)+ f kip(x(z)) ~ F(t'(x(x)),t)bdt =- 0 

j=O tj(x(~)) 

From (2.10) we obtain F(t'(x(z)),0)x(z) dp(x(z)) + ~. p(x(z))(kj_kj_l) x 
p(x(x)) dr j=l 

(2.10) 

xF( t ' ( x (x ) ) ,  t j (x (x) ) )b  dtl(x('O) +kpp(x(z))  ~ .  
dx 

dt'(x(Y)) 
d~ 

+F(t" (x(x)), 0)Ax(x) + F(t" (x(x)),0)bkoP(X(X)) = 0 

Using (2.10) it can be proved that 

(2.11) 

kppb = F(t °,0)Ax(z)+kOpF(t*.0)b+ f p(kj -k j_; )F(t* ,tj )b 
j=l 

(p=p(x('O), t'=t'(x('O), tj=tj(x(~)), j=~.p) 

We multiply the right- and left-hand sides of (2.12) by y'(x) and use (2.8). We obtain 

y'(x)(F(t',0)Ax(x) + k0pF(t*,0)b) = -1 

We multiply (2.11) by y'(x) and use (2.8) and (2.13). This gives 

-dp(x('O) / d'c - dr* (x(x)) I dz - I = 0 

(2.12) 

(2.13) 

Equation (2.9) follows from the last relation. 

Relation (2.9) holds for any x ~ 0 and any z e Z. Hence we see that system (2.5) is asymptotically 
stable. In fact, if x(0) = z, the trajectory x(x), x ~ 0, of system (2.5) falls on the origin of coordinates 
after a time t*, which does not exceed t*(z) + p(z). 

3. AN A L G O R I T H M  FOR C O N S T R U C T I N G  A S T A B I L I Z I N G  C O N T R O L .  
G O V E R N I N G  E Q U A T I O N S  

The problem of constructing the function u(x), x ~ Z is complicated and has not been realized 
in practice. However, when stabilizing system (2.5) with a specified (arbitrary) initial state x(0) = z* 
there is no need to know every function u(x), x ~ Z. In fact, suppose the initial state z* is specified. It 
generates the trajectory z*(t), t 1> 0, of system (2.5). Consequently, in this specific process of stabilization 
we will not use every feedback (2.4) but only its form u*(x) = u(z*(x)), x I> 0 along the curve z*(x), 
x I> 0. Here there is no need to know the value of the control u*(x) in advance (up to the start of 
the stabilization process). It will only be necessary at the current instant ~ when system (2.5) is in the 
state z*(x). 

These facts enable us to develop an algorithm for constructing the function u*(x), x ~ O, in real time 
for each specific process of stabilizing the state x(0) = z*. 

We will write this algorithm. We construct the open-loop control u(t I z*), t ~ T(z*), t*(z*), p(z*) and 
the corresponding optimal vector of the Lagrange multipliers y(z*) e R a for problem (2.1) with z = z*. 

We will denote the parameters (2.6) by tj(z*),j = 1,p(z*); p(z*), kj(z*),j = 0,p(z*). We put u*(0) 

= u ( + 0 1  z*). 
We will assume that the stabilizer operates in the interval [0, %], % >I 0. Then we construct a 

stabilizing control u*(t), t ~ [0, %[ and the corresponding trajectory z*(t), t e [0, %], of the system X = 
Ax + bu*(t), x(0) = z*, t e [0, %]. By (2.4), to construct the control u*(x) for x e T+(%) we need 
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to know the open-loop solutions u(t I z* (x)), t • [0, t*(z* (x))] of problems (2.1) when z = z*(x), x • 

We will denote 1:he parameters (2.6) constructed for z = z*(x) by 

p('t), kj(x), j = 0 ,  p(x), tj(x), j = l , p ( ~ ) ,  t°('Q, p(x) (3.1) 

We will call the function 

A,(t) = -y'(x)F(t'(x),t)b, t • T(X)= T(z'(x)), (3.2) 

the optimal co-co:atrol of  problem (2.1) for z = z*(x). 
We will call the parameters (3.1) the defining elements of the open-loop solution of problem (2.1) 

when z = z*(x), since, knowing (3.1), we can easily construct the optimal open-loop equation 

u(tlz°(x)) = kj(x)p(x), t •.[tj('O, tj+l('Q{ , j = O, p('t) (3.3) 

tO(X) = O, tt,(x)+l('C ) = t'('C) 

and the optimal co-control A~(t), t • T(x), (3.2), along which the necessary condition for optimality 
(2.3) is satisfied. 

We will henceforth assume that if there is a unique Lagrange-multiplier vector y(x) for z = z*(x) 
in problem (2.1) for the solution (3.3), then in the co-control corresponding to it the following 
relation is satisfied: for any to • T(x) the following inequality follows from the equations At(t0) = aA~(t0)/ 
a t = o  

a2A,( t0) /a t  2 ~ 0  

We will initially assume that at the instant x 0 the defining elements are such that 

1. f l (x0)>0; 

2. rank(F(t*(Xo),tj(xo))b , j = 1,p(x0) ) = n -  1; 

3. aAx( t ) / atl,=t~( ~o) . o, j =  l,p(Xo). 

(3.4) 

It can then be shown that the defining elements (3.1) when x • T+(x0) can be found uniquely from 
the relations 

P(x)=P, k j (~ ' )=(- l )Jk,  j = i ~  

4)(x,k, tj(x), :(x), p(x))=O 

q(t ' (x) , t j (x) ,  y(x))=O, j = l , p  

q.(x, t ' (x) ,  y(x),p(x)) = O, qo(k,p,y('c),p(.O) = 0 

(3.5) 

where 

O(x,k, tj,j = l,p,t*,p) = F(t',0)z'(x)+ 
p . tj+l 

+p y. (-l) ~k J" F(t°,t)bdt, t o=O, tp+ 1=t*; k=ko(xo) , p=p(,Co) 
j=O tj 

q.(%t°,y, p) = y' F(t',0)z" (X) -p, q(t',t,y) = y'F(t °, t)b 

qo (k, p,y,p) = y'bp(-l)P k + I 

and from the initial conditions 
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t j ( xo+O)=t j (~o) ,  J= l ,p (z0 ) ,  P(Z0+0)=P(x0), Y(X0+0)=y(x0) 

In fact, we calculate the Jacobi matrix of Eqs (3.5) 

G~ 

G= D-~-~-i G,2 
d "  

G 2 =G2('LI ' , t j , j=~,P,  p)= 

= (F(t*, t j )b,  j = I ~ ;  bp(-l)P;F(t ' ,z)z*(z))  

G I = G 1 (x,t*,tj,j = 1~, p,k) = G 2 diag(pctj , j=  1"~; 1; - 1 / p) 

a i = 2 f - l ) ) - l k ,  j=~,p  

D=D(x. t ' , t / .  j=F.p,  y)=diag(-aa~(t/) /at ,  j=l-~;  y 'b(-l)  r) 

f=(y 'AF(t* , t j )b ,  /=1-~,0, y'AF(t',x)z*('0)" 

d ' --(d/=0,  j= l ,p ;  - 1 )  

When conditions 1-3 are satisfied the following inequality holds 

detG = detG(x0,t*(x0), k,tj('{o), j = 1"~, p(x0), y(x0)) ~ 0 

According to the theorem of implicit functions, when x ~ T*(xo) there are unique continuous functions 
(3.1) for which relations (3.5) are satisfied identically. 

For x e T+(z0) the stabilizing equation is constructed using the rule 

u*(x) = p(x)k(x0), x ~ T+(%) (3.6) 

The governing elements (3.1) and the stabilizing control can be found from rules (3.5) and (3.6) so 
long as relations 1-3 hold. 

4. AN A L G O R I T H M  FOR C O N S T R U C T I N G  THE S T A B I L I Z I N G  
C O N T R O L .  THE CASE W H E N  R E L A T I O N S  1-3 B R E A K  DOWN 

Relations 1-3 may break down as a result of the fact that for a certain xt > x0 one of the following 
situations occurs 

1. tt(~)--*0 as T---*xt-0 

2. t~ (x) --* t 0, tjo+l (x) --* t o as x --* x I - 0 

3. t o - ~ { t j ( ' q - 0 ) ,  j=l,"-fi,}, A~,(t0)=0 exists. 

We will assume that at the instant xl only one o___f situations 1-3 can occur and on one index. 
Consider case 1. We put sj = tj+l(xl - O),j = 1, ~, ff = p - 1, k = -k ,  s* = t*(x] - 0), ~ = P(X] - 0). If 

rank(F(s ' ,sj)b,  j = I,~) = n -  i (4.1) 

then, when x e T+(xt) the governing elements (3.1) and u*(x) are found from relations (3.5) and (3.6), 
where the signsp and k are replaced by/~, k, and the initial conditions are 

tj(zj + 0 ) = s ) ,  j = l , ~ ;  p(~j + 0 ) = ~  (4.2) 

t ' ( x  I + 0 ) = s ' ,  y(x t + 0 ) = y ( x  I - 0 )  

Suppose condition (4.1) breaks down. In this case, when x E T+(xl) we have 
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t / ( X ) = s / - ( ' C - ' t t ) ,  j = l ,  ff 

p(X) = ~, t ' ( X ) = s ' - ( X - X ~ )  (4.3) 

Hence, for x ~ T+(xl) the stabilizing control u*(x)  is identical with the open-loop optimal control 
u(x  - x l l  z*(xl)), x:~ t> x, of problem (2.1) with z = z*(xl) 

u*(X) = u(l : -  xtlz*(xl)), x ~ T+(x l )  (4.4) 

The stabilizer is "switched off" for a while. An estimator, which solves the problem 

fo(x)= max (y 'b ( - l )Pk)  
yeY('O 

Y('¢) = {y ~ R " : y ' F ( s * , x  - x, )z* (x) = 

y'  F(s ' ,  sj )b = O, / = 1-~ (4.5) 

y 'F(s* , t )b ( - I ) Jk '~  < 0, t ~ [ s j , s j+ t ] ,  j = O , ~ }  

S O = ' t - - ' [ i ,  S~+l = s  

for x ~ T+(x0 is "connected" instead of it. It can be shown that problem (4.5) always has a solution 
and, moreover, f.(xl) > -1,f . (x)  ~< 0, x I> Xl. 

We will denote the optimal plan of problem (4.5) byy*(x). It can be proved that 

0 < ~ ( x )  = y" (x  t - 0)F(s ' ,  x - x~ )z" (x) <~ ~, x ~ [x I , s'[ 

It follows from the last relation that iff.(x) > -1, the vector 

y(x) = k(x)y(x I - 0)~ / ~(x) + (1 - ~.(x))y" ('c) 

where 0 ~< Z.(x) =: (1 + f . (x)) l ( f f lO(x)  + f.(x)) ~< 1, is a vector of the Lagrange multipliers in problem 
(2.1) when z = z*(x), and along the solution of the conjugate system (2.2)and the control corresponding 
to it 

u(tlz*(X)) = ( - I ) / p k  -, t ~ [t)('t), tj+ I (X)[ 

j = 0 ,  ff; t0( '~)=0,  t-fi+l(x)=t*(X ) 

the necessary conditions of optimality (2.3) are satisfied and tj(x) ( j  = 1, p ) ,  t*(x)  are defined by 
(4.3). 

Problem (4.5) is a problem of linear programming with a continuum of constraints. The algorithm 
for solving it in real time is analogous to that described previously [8]. The operation of the algorithm 
reduces to solving a special system of non-linear (governing) equations. 

We act in accordance with rules (4.3) and (4.4) and solve problem (4.5) until, at a certain instant 
x2 I> xl, one of tile following situations occurs: (a)f.(x2) = 0; (b) tl(x2) = Sl - (x2 - xl) = 0; (c).f.(x2) 

--1. 
Consider case (a). It can be shown that when x e [x2, s* + x2] the solution of problem (4.5) will have 

the form y*(x) = y*(x2)T(x) , f . (x )  = O, where ~(x) = 15/y .1 (x2)F(s*, x - x2)z*(x) > 1. Consequently, when 
x > x2 there is no :aeed to solve problem (4.5). When x E [% s* + x2] the stabilizing control is constructed 
in accordance wkh rule (4.4). When x > s* + x2 we assume u*('t) - O, x > s* + % since, by construction, 
z * ( s *  + x2) = 0.  

In case (b) we: assume ~j = t j+l(x2), j  = 1, m ,  m = ~ - 1 ,  q = - k ,  ~* = t*(x2). For x E T + (x2) we 
act in accordance with rules (4.3)-(4.5), where sj, j = 1,/~, k, xl are replaced by ~j, j = 1, m, q, x2 
until, for a certain x 3 > x2 one of situations of the type (a)--(c) occurs. 

Consider case (c). Since f.(x) > -1 ,  x ~ T -  (x2) , f . ( x2) , f . ( x2)  = -1 we have df.(x2)/d'c <<- O. We Will 
assume that dfo(~2)/dx < O. 

Consider the optimal plan y* = y*(x2) of problem (4.5). We put 
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{t j, j = l,t} = {t ~ [X~ - Xl, s* ] \ {s j, j = !, if}: 

y"F(s ' ,  t)b = 0} 

According to the criterion of optimality in problem (4.5) [9], numbers ~ ~> 0, j  = 1, l, l~,J = 1,p, 
exist such that 

t 
~, ~ jF(s ' ,  tj )bTj + ~ lajF(s °, sj )b + ~0F(s ", x 2 - xt )z ° (x) = b(-!  )?/~" 
j=~ j=~ 

where ~ = (-1)i£, iftj ~ ]si, si+~[. 
We will assume that the solution of problem (4.5) when x = x2 is non-degenerate, i.e. I~ ~ 0, j = 

1, l, rank(F(s*, tj)b, j = 1, l) = 1. To simplify our further calculations we will assume that (x2 - x~) 

-~- (ti, j = l,  l). 
By virtue of assumption (3.4) we have 

y e F ( s ' , s j ) A b ~ O ,  j = ~ , ~ ,  o" . y F(s , t j )A  b;e0,  j = ~ , l  

We p u t m  = :  + 21, {~/,j = l , m }  + {sj, j = l , f f ,  stj = tj, s~ 4 = tj, j = l , l } , g j  <<-~+~,j = l , m  - 1;q = k. 
Taking the above assumptions into account it can be shown that when x ¢ T+(x~) the governing 

elements (3.1) and the stabilizing control u*(x) are found by rules (3.5) and (3.6), wherep  and k are 
replaced by m and q, starting from the initial conditions 

tj('[ 2 +O)=s)  - (T  2 -'CI), j =  I,m; p(x 2 + 0 ) = ~  

t ' ( z 2 + O ) = s ' - ( Z 2 - X t ) ,  y(x2 +0)  =y" 

We act in accordance with rules (3.5) and (3.6) until one of  the situations 1-3 occurs. 
Consider situation 2. Clearly, tj0+l(~l) - tj0 (xl) ~< 0. We will assume that t:o+l(xl) - t:0 (xl) < 0. We 

put 

s j = t j ( z l - O ) ,  J = l , j o - l ,  s j=t j+2(z l+O) ,  J=Jo ,P ,  p = p - 2  

k=k, s" =t'(* l-O), ~=p(x~-0) 

We then act in accordance with the rules of case 1. 
Consider case 3. It can be shown that to ~ 0, to ~ t*(xl). Consequently, to ~ int T(x 0. Suppose, to fix 

our ideas, that to e ]tj. (x0, tj.+l(xl)[. It is obvious that dy'(xOF(t*(xl), to)b(-1)J'k/dx >~ O. We will assume 

that df(xOF(t*(Xl) ,  t o )b ( - l y ' k /dx  > O. 
We put sj = tj(xl - O),j = 1,j. ,  sj. = sj.+l= to, sj = tj-2(xl - O).j =j .  + 2, ~ ; p = p + 2, k = k, ~ = P(Xl 

- 0), s* = t*(xl - 0). We then act in accordance with the rules of case 1. Note that in this situation 
relations (4.1) will always be satisfied. 

We described above an algorithm for constructing the function u*(x), x >>- 0 on the assumption that 
for any x ~> 0 the solution of problem (2.1), z = z*(x), constructed from the governing elements (3.1), 
is a unique solution of problem (2.1). In this case the functions p(x), t*(x), x ~> 0 will be continuous. 

In the general case, a situation is possible in which, for certain ~ in problem (2.1) with z = z* (~) in 
addition to the solution 

u(tlz" (~)) = p ( - l )  ) k, t ~ [tj (~), tj+ I (~)[ 

j=O,-'-p, to(~)=O, tp÷l(~)=t ' (~) ,  p ( ~ ) = p  (4.6) 

corresponding to the governing elements constructed from the rules described above, there will be one 
other solution 

u(tlz'(~)) = p~'~(-OJk ~'~, t ~ [t~'~(~), t~:,~ (~)[ 

j = O, p('); t0~')(~) = O, t~')+l (~) = t (')" (~), p(')(~)  = p(') (4.7) 



Stabil izat ion of  dynamic  systems using posi t ional  solutions 549 

with a smal ler  value of  ~ q  p a r a m e t e r  p(*): p(*) < p. ( I t  can be  shown tha t  no o the r  solut ion with a 
va lue  of  the parame(:er  p~*J > p can occ~ur.) 

In  this case we put  sj = t(*)j (~) , j  = 1,/~,/~ = p(*), s (*) = t (*)* (~), ~3 = p(*)(¢),  ~ = k (*). We then  act 
in accordance  with the  rules  of  case 1, replacing zl by z-. No te  tha t  the funct ions i f (x) ,  p(~) are 
discont inuous at  the po in t  ~ = ~. 

5. E X A M P L E  

As an illustration we will consider the problem of stabilizing a mathematical pendulum in the upper unstable 
equilibrium position by a moment applied to it at the axis of suspension. This moment is generated by a slave 
mechanism, which is an integrating circuit. The behaviour of the slave mechanism is in turn regulated by a certain 
controlling force u [4]. 

The equation of the perturbed motion has the form 

Xl = X2, X2 = sinxl +x3, i3 = U2 

where xl = ¢ is the angle of deflection of the pendulum for the vertical and xx = g x3 i s  the moment applied to 
the pendulum. 

We will write the o~uation of the first approximation 

"i:l = X2, "~2 = Xl + -r3, "i:3 = U (5.1) 

TO stabilize system (5.1) when 't > 0 we must solve the problem 

t* +5p~ rain, xl = x2, -f2 = xm +x3, :~3 =u 

x(O)=z*('~), Xl(t*)=x2(t*)=x3(t*)=O , lu(t)l~p, t¢[O,t °] 

(5.2) 

where z "  (z) = (zr(x), i f f i  1, 2, 3) is the state of system (5.1) at the instant ~, reached due to the action of the control 
u*(t), t ¢ [0, z[ generated. The control u'( t )  is constructed in accordance with the rules described in Sections 3 
and 4. 

In this example wc took z* = (1.27; -1.67; 0) as the initial state. For x(0) = z* the functionf(t*) = t* + 5p(t °) 
(1.3) and (1.4) has two local minima (Fig. 1): (1) at the point t'~ = 1.9947 a non-smooth minimum with p(t('l; = ( )  ._ 
1.0042,f(t(*~)) = 7.016; (2) at the point t(*2) = 3.294 a smooth minimum with p(t~ = 0.782,f(t(*2)) = 7.204. When 

° . . . .  0 ° t = t0) the optunal control of problem (1.4) has a single reversing point t](2) =" 0.9974 when t = t(2 ) the optimal 
• . * < ~  ° • control of problem (1.4) has two reversmg points tl(z) = 1.264, t2(2) = 2.912. Smcef(to) ) f(t(2)), the solution of 
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Fig, 1. Fig. 2. 
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problem (5.2) when x = 0, z*(0) = z* has the form 

u(tlz*)-- p(z*), t ¢ [0,t I (z*)[ 

u(tll*) = -p(z*), t ¢ [tl(Z*). t'(l*)] 

t* (Z*) = t~, p(z* ) = p(t(*l) ), t I (Z*) = tl(1) 

(5.3) 

The process of stabilization begins with solution (2.3). Here, when 0 < x < 0.12, to cons t ruc t  the control u*(x) 
we use rules (4.3) and (4.4). At  the instant ~ = ~ = 0.12 we have the situation described at the end of Section 4, 
when, with ¢ = f, problem (5.2) has two solutions: (1) solution (4.6), where p = 1, k = 1, tt(¢) =t t f t )  - "~, t*(¢) = 
t ' o )  - ~_] ~(~ p(t*(,,); (2) solution (4.7), wherep  (*) -- 2, k (*) -- 1, t~i,(¢ ) -- 1.35 - ¢, t~2)('~) -- 3.18 - ¢, t ( ' )  (1) 
3.62 - _ = 0 .6~.  Since p(*) < p, then, in accordance with the ~gorithm, we assume 

sj  =t~*) ( ] ) , j - - i ,2 ;  s* = t ( ' ) ' (~) ,  ~ = p ( ' ) ,  k--k(*) ,~---2 (5.4) 

and we act in accordance with the rules of case 1, assuming xl -- ¢. We have (4.1) for the parameters (5.4). 
Consequently, when ¢ E T+(¢) the control u*(x) is constructed in accordance with the rules (3.5) and (3.6), where 
p and k are replaced by~,  ~ and initial conditions (4.2). 

The rules (3.5) and (3.6) are used up to the instant x = ~l = 1.69. At the instant ~1 we have tt(¢t) = 0, t2(¢1) = 
4.62 - xl, t*(¢1) = 5.2 - ¢t, i.e. we obtain situation 1. For  st = t2(¢l), $* --/*(~1) a n d p  = 1 relations (4.1) break 
down, and hence when t 6 T+(¢t) we act according to the rules (4.3)-(4.5). Since f,(~t) -- 0, we have case a when 
~=~1. 

According to the algorithm for 1.69 <~ x ~ 5.2 the stabilizing control u*(x) is constructed according to rule (4.4). 
For x > 5.2 we assume u*(x) = 0 asx*(5.2) = 0. The stabilization is completed. 

We will consider the process of stabilization of system (5.1) for constantly acting unknown perturbations w(t), 
t ~ 0, under the influence of which system (5.1) takes the form 

Xl =x2,  -¢2 =xl  +x3+w( t ) ,  x3 =u 

To stabilize (5.5) when x > 0 we solve the problem 

t" + Sp .-.~ min. k I = x2. x 2 =xt+x], ./3=u 

x (0 )=z~(x) ,  Xl ( t* )=x 2 ( t* )=x3 ( t* )=O,  lu(t)l~<p, t ¢ [ 0 , t  °] 

(5.5) 

where z*~(x) = (z~(~), i = 1, 2, 3) is the state of  system (5.5) at the instant x, reached under the action of the 
generated control u~(t) ,  t 6 [0, x[, and the perturbation w(t), t ~ [0, x[. The control u*(t)  is constructed using rules 
similar to those described in Sections 3 and 4 and [7]. In the example we took w(t) = 0.1cos St, t >~ 0 as the 
perturbation. 

In Fig. 2 we show the behaviour of z*t(x) when 0 ~< x ~ 5 due to the action of the generated control u*(x) (the 
continuous curve), and the behaviour of Z~l(X) under the action of the generated control u*(x) and the perturbation 
w(x) = 0.1cos 5x (the dashed curve), and also u*(x) and u~(x). 

This  research  was car r ied  out  with f inancial  suppo r t  f rom the  In t e rna t iona l  Science Founda t i on  
(MW300). 
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